
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2009; 59:443–458
Published online 2 June 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1825

Slip effects and heat transfer analysis in a viscous fluid over
an oscillatory stretching surface

Z. Abbas1,2,∗,†, Y. Wang1,3, T. Hayat4 and M. Oberlack1

1Chair of Fluid Dynamics, Department of Mechanical Engineering, Darmstadt University of Technology,
Darmstadt 64289, Germany

2Department of Mathematics, Faculty of Basic and Applied Sciences, IIU, Islamabad 44000, Pakistan
3Institute of Geotechnical Engineering, University of Natural Resources and Applied Life Sciences,

Feistmantelstrasse 4, 1180 Vienna, Austria
4Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan

SUMMARY

In this study, we investigate the heat transfer problem in a viscous fluid over an oscillatory infinite sheet
with slip condition. The sheet is moved back and forth in its own plane. The derived problem involves a
dimensionless parameter indicating the relative magnitude of frequency to sheet stretching rate. A system
of non-linear partial differential equations is solved numerically using the finite-difference scheme, in
which a coordinate transformation is employed to transform the semi-infinite physical space to a bounded
computational domain. The physical features of interesting parameters on the velocity and temperature
distributions are shown graphically and discussed. The values of the skin-friction coefficient and the local
Nusselt number are given in tabular form. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As evidenced by the recent literature [1–10], tremendous progress has been made in various ways
for the steady flow of a stretching sheet. The work on this problem has been initiated by Sakiadis
[11]. In fact, such investigations are motivated by their relevance in engineering and technology;
for instance, in the aerodynamic extrusion of plastic sheets, in the boundary layer along a material
handling conveyers, in the cooling of an infinite metallic plate in a cooling bath, the cooling and/or
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drying of paper and in textile and glass fiber production. Despite such potential importance, very
little work has been done on the unsteady flow induced by a stretching sheet. For a list of the basic
attempts concerning with this subject, we refer the readers to the articles [12–17]. Furthermore,
Wang [18] analyzed the viscous flow caused by the oscillatory stretching of a sheet.

Flow and heat transfer characteristics over a stretching sheet have important industrial applica-
tions, for instance, in the extrusion of a polymer sheet from a die. In the manufacture of such sheets,
the melt issues from a slit and is subsequently stretched. The rates of stretching and cooling have a
significant influence on the quality of the final product with desired characteristics. Moreover, the
polymer melts often exhibit macroscopic wall slip, which in general is governed by a non-linear
and monotone relationship between the slip velocity and traction. In the light of this, the purpose
of this article is to study the heat transfer of a viscous fluid over an oscillatory stretching sheet with
slip condition. The slip condition is taken into account in terms of the shear stress. The resulting
non-linear problem is solved numerically and the influences of the various pertinent parameters
are discussed.

2. FLOW ANALYSIS

Consider a two-dimensional flow of an incompressible viscous fluid over an oscillatory stretching
surface at y=0. Here, the x-axis is taken along the stretching surface and the y-axis normal to
it (Figure 1). The elastic sheet is stretched back and forth with velocity uw=cx cos�t (c is the
maximum stretching rate and � is the frequency). The fluid occupies the region y>0. The surface
and ambient temperatures are Tw and T∞, respectively, and Tw>T∞. In the absence of viscous
dissipation, the continuity, Navier–Stokes equations and energy equations are
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where (u,v) are the velocity components in the (x, y) directions, respectively, t is the time, � is
the kinematic viscosity of fluid, � is the density of the fluid, p is the pressure, cp is the specific
heat at constant pressure, k is the thermal diffusivity and T is the temperature.

The corresponding slip conditions for the velocity and temperature are

u=uw=cx cos�t+N�
�u
�y

, v=0, T =Tw+d
�T
�y

at y=0 (5)

u→0, T →T∞ as y→∞ (6)
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Figure 1. Geometry of the flow problem.

in which both c and � have the dimension (time)−1, N is a slip constant and, for N =0, the no-slip
condition can be obtained, d is the thermal slip parameter and, for d=0, the thermal condition in
the absence of slip can be obtained.

We define

S≡ �

c
(7)

and employ the following transformations:

y =
√
c

�
y, �= t�, u=cx fy(y,�), v=−√

�c f (y,�)

�(y,�) = (T −T∞)/(Tw−T∞), p= p(y,�)

(8)

then the continuity equation (1) is satisfied automatically and the governing equations (2)–(4)
reduce to

S fy�+ f 2y − f fyy = fyyy (9)

p

�
=��

∫
f� dy− v2

2
+�vy+const (10)

�yy+Pr( f �y−S��)=0 (11)

The relevant boundary conditions (5) and (6) take the following forms:

fy(0,�)=cos�+� fyy(0,�), f (0,�)=0, �(0,�)=1+	�y(0,�) (12)

fy(∞,�)=0, �(∞,�)=0 (13)

In the above equations Pr=�cp/k is the Prandtl number, �=N�
√

�c is the non-dimensional slip
factor and 	=d

√
c/� is the non-dimensional thermal slip parameter. Knowing the velocity field

one can determine the pressure field.
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The physical quantities of interest are also the skin-friction coefficient Cf and the local Nusselt
number Nux , which are defined as

Cf= �w
�u2w

, Nux = xqw
k(Tw−T∞)

(14)

where �w and qw are the wall skin friction and the heat transfer from the sheet, respectively. These
are given by

�w=�
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y=0

(15)

Through the transformations (8) one obtains

Re1/2x Cf= fyy(0,�), Re−1/2
x Nux =−�y(0,�) (16)

where Rex =uwx/� is the local Reynolds number.

3. SOLUTION OF THE PROBLEM

The coordinate transformation 
=1/(y+1) is applied for transforming the semi-infinite physical
domain y∈[0,∞) to a finite calculation domain 
∈[0,1], i.e.
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With these transformations, the differential equations (9) and (11) can be rewritten in terms of 
 as
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The boundary conditions (12) and (13) can be rewritten in terms of 
 as

f
 =0, �=0 at 
=0 (19)

f =0, −
2 f
 =cos�+�(
4 f

+2
3 f
), �=1−	
2�
 at 
=1 (20)

We can discretize them for M uniformly distributed discrete points in g=(
1,
2,
3, . . . ,
{M})∈
(0,1) with a space grid size of �
=1/(M+1) and the time levels t=(t1, t2, . . .). Hence, the
discrete values ( f n1 , f n2 , . . . , f nM ) and (�n1,�

n
2, . . . ,�

n
M ) at these grid points for the time levels

tn =n�t (�t is the time step size) can be numerically solved together with the boundary conditions
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at 
=
0=0 and 
=
{M+1} =1, (19) and (20), as the initial conditions are given. We start our
simulations from a motionless velocity field and a uniform temperature distribution equal to the
temperature at infinity

f (
,�=0)=0 and �(
,�=0)=0

The oscillatory motion of the sheet with a temperature Tw (�=1) is suddenly set from �=0 at

=1 (y=0). We will see that the periodic motion will be reached after 2–4 periods. Since there are
two boundary conditions for f at 
=1 and only one at 
=0, we cannot use central differences to
approximate the third-order spatial derivative f


 emerging in Equation (17). For the third-order
derivative, the following finite-difference scheme is used, which is not central differences, and
only of first-order accuracy:
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where fi is the numerical value of f at the point 
=
i . We construct a semi-implicit time difference
for f and �, respectively, and make sure that only linear equations for the new time step (n+1)
need to be solved:

S
1

�t

(
� f (n+1)

�

− � f (n)

�


)
= 
2

(
� f (n)

�


)2

+6
2
� f (n+1)

�

−2 f (n)


� f (n)

�

+6
3

�2 f (n+1)

�
2

− f (n)
2
�2 f (n)

�
2
+
4

�3 f (n+1)

�
3
(22)

SPr
(�(n+1)−�(n))

�t
=
4

�2�(n+1)

�
2
+2
3

��(n+1)

�

−Pr f (n)
2

��(n+1)

�

(23)

It should be noted that other different choices of time differences are also possible. By means
of the finite-difference method we can obtain two linear equation systems for f (n+1)

i and �(n+1)
i

(i=1,2, . . . ,M) at the time step (n+1), which can be solved, e.g. by the Gaussian elimination.

4. NUMERICAL RESULTS AND DISCUSSION

We obtain the velocity and temperature fields by solving Equations (17) and (18) with boundary
conditions (19) and (20) numerically for the 
-coordinate. Then the numerical solutions are trans-
formed to the physical space with y-coordinate. The velocity f ′ (= fy) and the temperature profile
� and the time series of the first five periods �∈[0,10�] are illustrated for various values of
non-dimensional relative amplitude of frequency to the stretching rate S, the slip parameter �, the
Prandtl number Pr and the thermal slip parameter 	 in the case of no-slip (�=0,	=0) and with
slip (� 
=0,	 
=0). Furthermore, we compute and compare the values of skin-friction coefficient
Re1/2x Cf and the local Nusselt number Re−1/2

x Nux for various parameters both graphically and
they are tabulated.
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Figure 2. Time series of the flow at the four different distances from the surface for
the time period �∈[0,10�]: (a) the velocity field f ′ and (b) the temperature profile

�, with the following parameters S=10, �=0.5=	 and Pr=3.

Figure 2 shows the time series of the velocity f ′ and the temperature field � at four different
distances from the sheet surface with fixed values of the dimensionless parameters �=0.5,
S=10,Pr=3 and 	=0.5 for first five periods �∈[0,10�]. From Figure 2(a), it can be seen that the
amplitude of the flow near the oscillation surface is larger compared with that far away from the
surface. With the increase in the distance from the surface, the amplitude decreases and approaches
to zero. For the given motionless initial condition, a periodic motion is quickly approached, approx-
imately 2–3 periods after the flow conditions are set. An interesting phenomenon is that a phase
lag can be identified in the time series of velocity with the increases in distance from the sheet.
Figure 2(b) shows that the temperature � also decreases as the distance from the surface increases.
In contrast to the time series of velocity, almost no oscillation can be identified from the time series
of temperature. The temperature increases monotonically with time. It can be predicted that for
�→∞, the dimensionless temperature � for different distances from the sheet approaches unity,
which means a uniform temperature field equal to the sheet temperature.

Figure 3 illustrates the influence of the relative amplitude of frequency to the stretching rate S on
the velocity profile f ′ in the case of the no-slip boundary condition (�=0) for four different times
�=8.5�,9�,9.5� and 10� in the fifth period for which a periodic motion has been reached. The
transverse profiles of velocity are illustrated only for the boundary layer near the sheet, y∈[0,10],
above which the velocity is negligible. Figure 3(a) shows that at �=8.5�, the velocity f ′ is zero
at the surface y=0 due to the no-slip condition and far away from the sheet it approaches to zero
again. It can also be seen that initially the velocity f ′ increases with the increase in the distance
near the sheet, then it decreases and oscillates becoming negative. This again shows the phase lag
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Figure 3. Transverse profiles of the velocity field f ′ at the four different values of S for the fifth
period �∈[8�,10�] for which a periodic velocity field has been reached: (a) �=8.5�; (b) �=9�;

(c) �=9.5�; and (d) �=10� in the case of no-slip �=0.

between the flow and the oscillation of the sheet. It indicates that along the transverse direction a
phase difference larger than � may occur. The velocity profiles for several other time points within
the fifth period are displayed in Figures 3(b)–(d). It can also be seen that the velocity field is not
in phase with the sheet oscillation. With the increase in the distance from the sheet, the phase
displacement increases. Furthermore, when S increases, the oscillation amplitude of the velocity
decreases.

Figure 4 is plotted for the variations of the slip parameter � on the velocity profile f ′ by keeping
S=10 fixed for the different times of �∈[8.5�,9�,9.5�,10�] in the fifth period, respectively.
When slip occurs (� 
=0), the flow velocity near the sheet is no longer equal to the sheet oscillation
velocity, i.e. a velocity slip exists. With the increase in �, such a slip velocity increases. Furthermore,
increasing the value of � will decrease the flow velocity amplitude, because under the slip condition
the propulsion of the oscillatory sheet can be only partly transmitted to the fluid.

Figure 5 elucidates the effects of the relative amplitude of frequency to the stretching rate S
(panels a and b) and the slip parameter � (panel c) on the time series of velocity at a fixed
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Figure 4. Transverse profiles of the velocity field f ′ at the four different values of � for the fifth period
�∈[8�,10�] for which a periodic velocity field has been reached: (a) �=8.5�; (b) �=9�; (c) �=9.5�;

and (d) �=10� with S=10 in the case of slip condition at the sheet (surface).

distance (y=0.25) from the sheet for the first five periods �∈[0,10�] in the case of no-slip (�=0
in panel (a)) and with slip (�=0.5 in panel (b)). The amplitude of the flow velocity decreases
as S increases. With the increase in S, a slightly increasing phase shift can be identified. For a
slip condition (�=0.5 in Figure 5(b)), the velocity amplitude decreases substantially. Figure 5(c)
shows the influence of the slip parameter � with fixed S=10. The amplitude of the external flow
decreases monotonically with the increase in �.

Figure 6 is plotted to see the effects of four different time points � within the fifth period
(corresponding to the periodic motion) on the velocity f ′ with fixed slip parameter �=0.5 and
S=10. The oscillations of the velocity profiles, the phase lag and the attenuation of the velocity
with the distance from the plate can be clearly observed again.

Figures 7–9 show the influence of the relative amplitude of frequency to the stretching rate S,
the Prandtl number Pr and the thermal slip parameter 	 on the temperature field �. Figure 7 gives
the effects of the varying S and Pr on the temperature profiles �(y) in case of no-thermal slip
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Figure 5. Time series of the velocity field f ′ in the first five periods �∈[0,10�] at a
fixed distance to the sheet, y=0.25: (a) effects of S with the no-slip condition at the
sheet (surface) �=0; (b) effects of S with the slip condition at the sheet (surface)

�=0.5; and (c) effects of slip parameter � for the fixed value of S=15.

(	=0) in the fixed time �=8�. It is observed from Figure 7(a) that the temperature is a decreasing
function of S. It means that increasing S prevents and slows down the heat transfer from the sheet.
As expected, Figure 7(b) shows that the temperature decreases for the large values of the Prandtl
number Pr due to the decreased thermal diffusivity.

Figure 8(a) gives the variations of the thermal slip parameter 	 on the temperature profile at the
time �=8� by keeping S=15 and Pr=5 fixed. As the thermal slip parameter 	 increases, less
heat is transferred from the sheet to the fluid; hence, the temperature values � for all distances
decreases. Figure 8(b) illustrates the temperature profiles for four different times � with 	=0.5,
S=10 and Pr=2. As expected, as the time increases, more heat is transferred to the fluid and �
increases.
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Figure 6. Transverse profiles of the velocity field f ′ at the four different time points of �
in the fifth period with �=0.5 and S=15.

Figure 7. Transverse profile of the temperature � at �=8� in the case of no-thermal
slip 	=0: (a) for various values of S with Pr=5 and �=0.5 and (b) for various

values of the Prandtl number Pr with S=15 and �=0.5.

Figure 9 depicts the results of varying S, Pr and 	, respectively, on the time series of the
temperature �. As shown in the transverse profiles of temperature � for different values of S
for a fixed time (Figure 7(a)), similar results can also be seen for the corresponding time series.
Figure 9(a) shows the change of the temperature with respect to S for no-thermal slip (	=0). It
can be seen that with the increase in S, i.e. with the increase in the sheet oscillatory frequency
or the decrease in the oscillatory amplitude the increase in the temperature � with time becomes
slower. Furthermore, a small oscillation, which is superimposed on the monotonically increasing
temperature time series, can be identified for small values of S. Similarly, with the increase in
Pr, i.e. the increase in the specific heat or the decrease in the thermal diffusivity, the increase
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Figure 8. The transverse profiles of the temperature �: (a) for various values of the
thermal slip parameter 	 as well as �=8�, Pr=5, S=15, �=0.5 and (b) for the

four different times as well as 	=0.5, S=10, Pr=1 and �=0.5.

in the fluid temperature becomes slower, as shown in Figure 9(b). Figure 9(c) shows that for a
slip thermal condition at the sheet much less heat is transferred to the fluid, the fluid temperature
increases much slower than that with a no-slip thermal condition.

Figures 10 and 11 show the influence of the relative amplitude of frequency S, the flow slip
parameter �, the Prandtl number Pr and the thermal slip parameter 	 on the skin-friction coefficient
Re1/2x Cf and the local Nusselt number Re−1/2

x Nux . Figure 10(a) elucidates the effects of S on the
skin-friction coefficient Re1/2x Cf at fixed value of �=1. It is observed that due to the oscillatory
motion of the sheet, the skin-friction coefficient Re1/2x Cf also varies periodically and its amplitude
increases with an increase in S. It means that with the increase in S, less momentum is transmitted
from the oscillating sheet to the fluid. Figure 10(b) gives the variations of the slip parameter �
on the skin-friction coefficient Re1/2x Cf at fixed S=15. As expected the oscillatory amplitude of
the skin-friction coefficient Re1/2x Cf decreases as the value of � increases, i.e. the slip condition
reduces the momentum transfer from the sheet to the fluid.

Figure 11 shows the physical significance of S, Pr and 	 on the local Nusselt number Re−1/2
x Nux .

Figure 11(a) illustrates the effects of S on the local Nusselt number Re−1/2
x Nux with fixed Pr=3,

	=0.3 and �=1. It is noted that for �=0, the local Nusselt number Re−1/2
x Nux has its maximum

and then decreases monotonically because for the given initial conditions the temperature gradient
at the sheet surface has its maximum initially and decreases with time. The local Nusselt number
Re−1/2

x Nux increases with the increase in S. A slight oscillation can be identified from the time
series with S=5. We can see from Figure 11(b) that the magnitude of the local Nusselt number
Re−1/2

x Nux is also increased as Pr increases. The variation of the thermal slip parameter 	 on
the local Nusselt number Re−1/2

x Nux can be seen from Figure 11(c). It is observed that the local
Nusselt number Re−1/2

x Nux has opposite effects for the values of 	 in contrast with the case of
S and Pr. The magnitude of the local Nusselt number decreases as the thermal slip parameter
increases. To sum up, increasing S and Pr will increase the heat transfer from the sheet to the
fluid, while increasing 	 will reduce this effect.
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Figure 9. Time series of the temperature � in the first five periods �∈[0,10�] at y=0.25: (a) effects of
S with no-thermal slip at the sheet (surface) 	=0; (b) effects of Pr with no-thermal slip at the sheet

(surface) 	=0; and (c) effects of thermal slip parameter 	 with S=15 and Pr=3.

Tables I and II quantitatively show the values of the skin-friction coefficient Re1/2x Cf and the
local Nusselt number Re−1/2

x Nux for the different values of relative amplitude of frequency to
stretching rate S, the slip parameter �, the thermal slip parameter 	 and the Prandtl number Pr.
Table I shows the values of the skin-friction coefficient Re1/2x Cf and the local Nusselt number
Re−1/2

x Nux for the various values of S and � at the time periods �=2� and 8�, respectively. It
is noted that the magnitude of the skin-friction coefficient Re1/2x Cf increases as the values of S
are increased for both time periods �=2� and 8�. The increment in the values of skin-friction
coefficient is larger at the time period �=8� when compared with the time period �=2�. The
local Nusselt number Re−1/2

x Nux is also increased as S increases for the both time periods �=2�
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Figure 10. Time series of the skin-friction coefficient Re1/2x Cf in the first five periods �∈[0,10�]: (a)
effects of S with slip at the sheet (surface) �=1 and (b) effects of the slip parameter � with S=15.

and 8�, but this change in the local Nusselt number is larger at the period �=2�. The magnitudes
of the skin-friction coefficient Re1/2x Cf are decreased considerably, while the values of the local
Nusselt number Re−1/2

x Nux are increased only slightly for large values of the slip parameter � at
both time periods �=2� and 8�. Table II gives the values of the local Nusselt number Re−1/2

x Nux
for different values of the thermal slip parameter 	, the Prandtl number Pr and the four different
time periods �=2�,4�,6�,8�. It can be seen that the local Nusselt number Re−1/2

x Nux decreases
as the values of the thermal slip parameter 	 increase for all four time periods �=2�,4�,6�,8�
and values of the local Nusselt number are also decreased when the time periods increase due to
the decrease in the temperature gradient near the sheet. This table also shows that the local Nusselt
number Re−1/2

x Nux increases for the large values of Prandtl number Pr.

5. CONCLUSIONS

In this paper we investigated the flow and heat transfer problem of a viscous fluid in a semi-infinite
space due to the oscillation of an infinite stretching and warmer surface with/without flow/thermal
slip conditions. A coordinate transformation is employed to transform the semi-infinite flow domain
to a finite computational domain and a suitable finite-difference method is used to solve the
governing partial differential equations. The time series of the flow velocity, the temperature, the
structure of the boundary layer near the sheet, the influences of the different values of the relative
amplitude of frequency to stretching rate S, the Prandtl number Pr and, especially, the flow slip
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Figure 11. Time series of he local Nusselt number Re−1/2
x Nux in the first five periods �∈[0,10�]:

(a) effects of S with no-thermal slip at the sheet (surface) 	=0 and Pr=2; (b) effects of Prandtl
number Pr with no-thermal slip at the sheet (surface) 	=0 and S=15; and (c) effects of the thermal

slip parameter 	 with S=15, Pr=5 and �=0.5.

parameter � and the thermal slip parameter 	 at the sheet are graphically presented and discussed.
The following conclusions may be extracted from the numerical results:

• When a periodically oscillating sheet is suddenly put into the viscous fluid, a periodic motion
can rapidly be observed, at most after three or four periods.

• The oscillation of the temperature time series can hardly be identified; the fluid temperature
increases with time monotonically.

• There exists a phase lag between the flow velocity and the sheet oscillation, which increases
with the distance from the sheet, up to a phase difference larger than �.

• The flow exists only within a shear layer near the sheet, while the heat can transfer to an
infinitely large distance with the increase in time.
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Table I. The values of the skin-friction coefficient Re1/2x Cf and the local Nusselt number Re−1/2
x Nux for

different values of S, � and two different time points when 	=0.5 and Pr=1.

�=2� �=8�

S � Re1/2x Cf Re−1/2
x Nux Re1/2x Cf Re−1/2

x Nux

3 0.5 −0.991348 0.326176 −1.038528 0.257534
5 0.5 −1.110076 0.390433 −1.136707 0.277388
10 0.5 −1.288023 0.521208 −1.303137 0.317028
15 0.5 −1.387906 0.620067 −1.398357 0.356688
20 0.5 −1.453961 0.698117 −1.461767 0.394677
10 0.0 −2.478828 0.520770 −2.591060 0.314812
10 0.5 −1.288023 0.521208 −1.303137 0.317028
10 1.0 −0.800192 0.522412 −0.804338 0.318404
10 2.0 −0.447958 0.523418 −0.448734 0.319411
10 3.0 −0.309987 0.523835 −0.310217 0.319794
10 5.0 −0.191544 0.524201 −0.191563 0.320115

Table II. The values the local Nusselt number Re−1/2
x Nux for different values of 	, Pr and four different

time points when S=10 and �=0.5.

�=2� �=4� �=6� �=8�

	 Pr Re−1/2
x Nux Re−1/2

x Nux Re−1/2
x Nux Re−1/2

x Nux

0.0 1.0 0.567704 0.429927 0.380987 0.356762
0.3 1.0 0.550257 0.409161 0.357609 0.331728
0.5 1.0 0.521208 0.392740 0.342794 0.317028
1.0 1.0 0.436805 0.346426 0.305842 0.283197
2.0 1.0 0.312979 0.267130 0.243003 0.228041
3.0 1.0 0.240492 0.213634 0.198383 0.188377
5.0 1.0 0.163227 0.150957 0.143468 0.138273
7.0 1.0 0.123270 0.116301 0.111899 0.108761
0.5 0.0 0.275358 0.275358 0.275358 0.275358
0.5 0.5 0.394987 0.318701 0.294697 0.284209
0.5 1.0 0.521208 0.392740 0.342794 0.317028
0.5 3.0 0.810907 0.615329 0.518054 0.457851
0.5 5.0 0.963344 0.755444 0.642523 0.567944
0.5 7.0 1.063076 0.854542 0.735532 0.653956
0.5 10.0 1.165156 0.961632 0.840072 0.753805
0.5 50.0 1.538309 1.397107 1.300617 1.224600
0.5 100.0 1.648709 1.538027 1.459846 1.396667

• Increasing the flow slip parameter causes the decrease in the amplitude of the flow velocity,
while with the increase in the thermal slip parameter the heat transfer from the sheet to the
fluid becomes slower.

• Increasing the relative amplitude of frequency to stretching rate S causes the decrease in the
velocity amplitude and diminishes the heat transfer.

• With the increase in the Prandtl number, the heat transfer from the sheet to fluid becomes
slower.
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